Modeling Predictors of Latent Classes in Regression Mixture Models
نویسندگان
چکیده
منابع مشابه
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low di...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملNonparametric Mixture of Regression Models.
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is ...
متن کاملDistributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes.
Growth mixture models are often used to determine if subgroups exist within the population that follow qualitatively distinct developmental trajectories. However, statistical theory developed for finite normal mixture models suggests that latent trajectory classes can be estimated even in the absence of population heterogeneity if the distribution of the repeated measures is nonnormal. By drawi...
متن کاملAn introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models.
OBJECTIVE Pediatric psychologists are often interested in finding patterns in heterogeneous longitudinal data. Latent variable mixture modeling is an emerging statistical approach that models such heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of the second of a 2-article set is to offer a nontechnical int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural Equation Modeling: A Multidisciplinary Journal
سال: 2016
ISSN: 1070-5511,1532-8007
DOI: 10.1080/10705511.2016.1158655